首页> 外文OA文献 >Modality-bridge Transfer Learning for Medical Image Classification
【2h】

Modality-bridge Transfer Learning for Medical Image Classification

机译:医学图像分类的模态 - 桥梁转移学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new approach of transfer learning-based medical imageclassification to mitigate insufficient labeled data problem in medical domain.Instead of direct transfer learning from source to small number of labeledtarget data, we propose a modality-bridge transfer learning which employs thebridge database in the same medical imaging acquisition modality as targetdatabase. By learning the projection function from source to bridge and frombridge to target, the domain difference between source (e.g., natural images)and target (e.g., X-ray images) can be mitigated. Experimental results showthat the proposed method can achieve a high classification performance even fora small number of labeled target medical images, compared to various transferlearning approaches.
机译:本文提出了一种基于转移学习的医学图像分类新方法,以减轻医学领域中标记数据不足的问题。本文提出了一种采用桥数据库的模态桥转移学习方法,而不是从源直接转移到少量标记目标数据。与目标数据库相同的医学成像采集方式。通过学习从源到桥以及从桥到目标的投影功能,可以减轻源(例如,自然图像)与目标(例如,X射线图像)之间的域差。实验结果表明,与各种转移学习方法相比,该方法即使对少量标记的目标医学图像也能实现较高的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号